Bounding homogeneous models
نویسندگان
چکیده
A Turing degree d is homogeneous bounding if every complete decidable (CD) theory has a d-decidable homogeneous model A, i.e., the elementary diagram D(A) has degree d. It follows from results of Macintyre and Marker that every PA degree (i.e., every degree of a complete extension of Peano Arithmetic) is homogeneous bounding. We prove that in fact a degree is homogeneous bounding if and only if it is a PA degree. We do this by showing that there is a single CD theory T such that every homogeneous model of T has a PA degree.
منابع مشابه
The degree spectra of homogeneous models
Much previous study has been done on the degree spectra of prime models of a complete atomic decidable theory. Here we study the analogous questions for homogeneous models. We say a countable model A has a d-basis if the types realized in A are all computable and the Turing degree d can list ∆0-indices for all types realized in A. We say A has a d-decidable copy if there exists a model B ∼= A s...
متن کاملA characterization of the 0-basis homogeneous bounding degrees
We say a countable model A has a 0-basis if the types realized in A are uniformly computable. We say A has a (d-)decidable copy if there exists a model B ∼= A such that the elementary diagram of B is (d-)computable. Goncharov, Millar, and Peretyat’kin independently showed there exists a homogeneous model A with a 0-basis but no decidable copy. We extend this result here. Let d ≤ 0′ be any low2 ...
متن کاملAn Efficient and Numerically Stable Method for Computing Interval Availability Distribution Bounds
The paper develops a method, called bounding regenerative transformation, for the computation with numerical stability and well-controlled error of bounds for the interval availability distribution of systems modeled by finite (homogeneous) continuous-time Markov chain models with a particular structure. The method requires the selection of a regenerative state and is targeted at a class of mod...
متن کاملOn Passive Quadrupedal Bounding with Flexible Linear Torso
This paper studies the effect of flexible linear torso on the dynamics of passive quadruped bounding. A reduced-order passive and conservative model with linear flexible torso and springy legs is introduced. The model features extensive spine deformation during high-speed bounding, resembling those observed in a cheetah. Fixed points corresponding to cyclic bounding motions are found and calcul...
متن کاملAn Efficient and Numerically Stable Method for Computing Bounds for the Interval Availability Distribution
T paper is concerned with the computation of the interval availability (proportion of time in a time interval in which the system is up) distribution of a fault-tolerant system modeled by a finite (homogeneous) continuous-time Markov chain (CTMC). General-purpose methods for performing that computation tend to be very expensive when the CTMC and the time interval are large. Based on a previousl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Log.
دوره 72 شماره
صفحات -
تاریخ انتشار 2007